Involvement of presenilin holoprotein upregulation in calcium dyshomeostasis of Alzheimer's disease

نویسندگان

  • Kamran Honarnejad
  • Christian KE Jung
  • Sven Lammich
  • Thomas Arzberger
  • Hans Kretzschmar
  • Jochen Herms
چکیده

Mutations in presenilins (PS1 and PS2) account for the vast majority of early onset familial Alzheimer's disease cases. Beside the well investigated role of presenilins as the catalytic unit in γ-secretase complex, their involvement in regulation of intracellular calcium homeostasis has recently come into more focus of Alzheimer's disease research. Here we report that the overexpression of PS1 full-length holoprotein forms, in particular familial Alzheimer's disease-causing forms of PS1, result in significantly attenuated calcium release from thapsigargin- and bradykinin-sensitive stores. Interestingly, treatment of HEK293 cells with γ-secretase inhibitors also leads to decreased amount of calcium release from endoplasmic reticulum (ER) accompanying elevated PS1 holoprotein levels. Similarly, the knockdown of PEN-2 which is associated with deficient PS1 endoproteolysis and accumulation of its holoprotein form also leads to decreased ER calcium release. Notably, we detected enhanced PS1 holoprotein levels also in postmortem brains of patients carrying familial Alzheimer's disease PS1 mutations. Taken together, the conditions in which the amount of full length PS1 holoprotein is increased result in reduction of calcium release from ER. Based on these results, we propose that the disturbed ER calcium homeostasis mediated by the elevation of PS1 holoprotein levels may be a contributing factor to the pathogenesis of Alzheimer's disease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence For and Against a Pathogenic Role of Reduced γ-Secretase Activity in Familial Alzheimer's Disease.

The majority of mutations causing familial Alzheimer's disease (fAD) have been found in the gene PRESENILIN1 (PSEN1) with additional mutations in the related gene PRESENILIN2 (PSEN2). The best characterized function of PRESENILIN (PSEN) proteins is in γ-secretase enzyme activity. One substrate of γ-secretase is encoded by the gene AMYLOID BETA A4 PRECURSOR PROTEIN (AβPP/APP) that is a fAD mutat...

متن کامل

Intracellular Calcium Deficits in Drosophila Cholinergic Neurons Expressing Wild Type or FAD-Mutant Presenilin

Much of our current understanding about neurodegenerative diseases can be attributed to the study of inherited forms of these disorders. For example, mutations in the presenilin 1 and 2 genes have been linked to early onset familial forms of Alzheimer's disease (FAD). Using the Drosophila central nervous system as a model we have investigated the role of presenilin in one of the earliest cellul...

متن کامل

Involvement of TRPM7 calcium channels and PI3K/AKT kinase pathway in protective effect of vascular endothelial growth factor in amyloid beta-induced model of Alzheimer’s disease

Background and Objective: Alzheimer’s disease (AD) is a progressive neurodegenerative disorder, in which cortical and hippocampus neurons death is the main target of neurodegeneration. In addition to extracellular beta amyloid accumulation and the production of neural tangles, one of effective factors in the pathology of Alzheimer's disease is vascular injury in the elderly including disturbanc...

متن کامل

Developmental control of Presenilin1 expression, endoproteolysis, and interaction in zebrafish embryos.

Dominant mutations in presenilin1 (PS1) and presenilin2 (PS2) are a major cause of early-onset Alzheimer's disease. In this report we analyze the expression of the zebrafish presenilin1 (Psen1) and presenilin2 (Psen2) proteins during embryogenesis. We demonstrate that Psen1 and Psen2 holoproteins are relatively abundant in zebrafish embryos and are proteolytically processed. Psen1 is maternally...

متن کامل

Regulation of ryanodine receptor-mediated calcium signaling by presenilins.

Ca dyshomeostasis is a critical causative mechanism underlying the functional impairment of the central nervous system seen in ‘healthy’ aging , specifically in normal brain aging processes in the absence of disease-causing mutations or external causes. It is generally thought that such impairments result from the gradual accumulation of small changes at the molecular level, such as oxidative d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2013